Chapter 16

Abstractions for Programming

Most of the current commercially available multimedia applications are implemented
in procedure-oriented programming languages (structural languages) such as C. In
the past, multimedia-specific functions (e.g., changing the volume while playing an
audio passage) were called, and respectively controlled, through hardware-specific
libraries or device drivers.

Unfortunately, the application code of most commercial multimedia application pro-
grams are still highly dependent on hardware. The exchange of a multimedia device
still often requires a re-implementation of important parts of the application pro-
gram. This also happens when devices produced by different companies with similar
or identical functionalities are exchanged. Consider, for example, video cards. Cards
with the same functionalities are produced by companies like Apple, IBM, Paral-
lax and RasterOps. However, the functions for accessing the cards are completely
different. With the advent of common operating system extensions, this problem is
attacked.

Some applications are implemented with the help of fools. These tools either directly
generate the code or manage routines which can be used by the application in order
to integrate the device units into the application. When these devices are exchanged,
these applications often require either generation of new code or the tool must be
changed and new interaction methods with the device units are needed.

671



672 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

A comparison can be made to the technique of programming with floating point
numbers. Different computers, which support floating point numbers, differ in their
architectures, instructions and interfaces. Sometimes, RISC architectures or paral-
lel processors are used. Despite the variety of architectures, only a few standard
formats, such as the IEEE format, are used for the presentation of numbers. The
programmers mostly use the so-called built-in functions of higher programming lan-
guages to make use of floating point processing capabilities.

In contrast to multimedia environments, well-defined abstractions in higher pro-
gramming languages can be found in the form of data types (e.g., float type in C).
This approach hides the actual hardware configuration from the application without
any major loss of performance.

In research, object-oriented approaches to the programming of multimedia systems
and especially applications, have been used [Bla9la, GBD*91, RBCD91, FT88,
LG90a, SHRS90, SM92a). Also, interfaces to communication systems are often
implemented via object-oriented approaches.

Mullimedia objects allow a fast integration in their environment despite their dif-
ferent capabilities, properties and functions. Development of a separate language
or extensions of a compiler are not necessary. Multimedia can become an integral
part of the programming environment if the proper class hierarchy is used. Unfor-
tunately, the various currently used class hierarchies are very different. There is no
generally accepted optimal class hierarchy.

This chapter describes different programming possibilities for accessing, and re-
spectively representing multimedia data. Further, this chapter gives an overview
of abstraction levels such as libraries, system software, higher procedural program-
ming languages and object-oriented approaches going into more detail in some of the
approaches.

16.1 Abstraction Levels

Abstraction levels in programming define different approaches with a varying degree
of detail for representing, accessing and manipulating data. We describe in this



16.1. ABSTRACTION LEVELS 673

chapter the abstraction levels with respect to multimedia data and their relations
among each other (shown in Figure 16.1). A multimedia application may access

[ Adultimedia Applicaliors

Ohject-oriented Highor
Progranaming Progranarmimg
L.angunage Foaam s gzes

Toolkits

Systermn Softwuare

l.ibraries

Device Drivers for Continuous Media

[

Figure 16.1: Abstraction levels of the programming of multimedia systems.

each level.

A device for processing continuous media can exist as a separate component in a
computer. In this case, a device is not part of the operating system, but is directly
accessible to every component and application. A library. the simplest abstraction
level, includes the necessary functions for controlling the corresponding hardware
with specific device access operations.

As with any device, multimedia devices can be bound through a device driver,
respectively the operating system. Hence, the processing of the continuous data
becomes part of the system software. This requires several properties described in
Chapter 9 from the multimedia operating system, for example, appropriate sched-
ulers, such as rate monotonic scheduler or earliest-deadline-first scheduler. Mul-
timedia device drivers embedded in operating systems simplify considerably the
implementation of device access and scheduling. For example, an operating sys-
tem could resolve the register allocation for individual devices so that no collision
occurs. In the case where allocation of registers for some devices (e.g., ATM host
interface) is controlled through the Operating System (OS) and for other devices
through applications {e.g., video card), the application programmer must be careful
when assigning the registers.



674 CHAPTER 16. AB3STRACTIONS FOR. PROGRAMMING

Dedicated programming languages, such as programming for Digital Signal Process-
ing (DSP), allow for the implementation of real-time programs. The correspond-
ing program mostly runs in a Real-Time Environment (RTE) separate from the
actual application. It is not very common today that an application software is
programmed in the RTE.

Higher procedural programming languages build the next abstraction level, They are
the languages most often used to implement commercial multimedia applications.
Further, they can contain abstractions of multimedia data [SF92]. The code gen-
erated from the compiler can be processed through libraries, as well as through a
system interface for continuous data.

More flexibility for the programmer is provided via the abstraction level — an object-
oriented environment. This environment provides the application with a class hier-
archy for the manipulation of multimedia. Also in this case, the generated or inter-
preted code can be processed and controlled through libraries, as well as through a
system interface for continuous media (see Figure 16.1).

16.2 Libraries

The processing of continuous media is based on a set of functions which are em-
bedded into libraries. This is the usual solution for programming multimedia data.
These libraries are provided together with the corresponding hardware.

The device driver and/or library, which controls all available functions, also supports
each device. (In the early DiME project at IBM Heidelberg, for example, a large
number of different audio and video components were supported by corresponding
hardware cards which were either connected directly to the workstation or were
implemented as extension cards [SSSW89].) Here, the libraries differ very much
in their degree of abstraction. Some libraries can be considered as extensions of
the graphical user interface, whereas other libraries consist of control instructions
passed as control blocks to the corresponding driver. Consider, for example, some
functions supporting the IBM’s early Audio Visual Connection (AVC):

acb.channel = AAPI_CHNA



16.3. SYSTEM SOFTWARE 675
acb.mode = AAPI_PLAY
and_init{&acb) /* acb is the audio control block */

audrc = fab_open(AudioFullFileName,AAFB_OPEN,AAFB_EXNO, 0,%fab,0,0,0,0);
fork(START IN PARALLEL)

aud_strt(&ach)

displayPosition(RelativeStarttime, Duration)

acb.masvol = (unsigned char} Volume
audrc = aud_crtl(&cb)

Libraries are very useful at the operating system level, but there is no agreement (and
may never be) over which functions are best for different drivers, i.e., which functions
should be supported. As long as neither sufficient support of operating systems for
continuous data nor farther integration into the programming environment exist,
there will always be a variety of interfaces and hence, a set of different libraries.

16.3 System Software

Instead of implementing access to multimedia devices through individual libraries,
the device access can become part of the operating system. An example of access
to multimedia devices and support for continuous media processing implemented in
operating system is the experimental Nemo system from the University of Cambridge
[Hyd94] (shown in Figure 16.2). The Nemo system consists of the Nemo Trusted
Supervisor Call, running in supervisor mode, and three domains running in user
mode: system, device driver and application.

The Nemo Trusted Supervisor Call (NTSC) code implements those functions which
are required by user mode processes. It provides support for three types of pro-
cesses. System processes implement the majority of the services provided by the
operating system. Device driver processes are similar to system processes, but are



676 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

Neme Trusied |8
Supersisor )

e " -

B T ) ¥ice Stuhy .

Figure 16.2: Structure of the Nemo system.

distinguished by the fact that they are attached to device interrupt stubs which ex-
ecute in supervisor mode. Application processes contain user programs. Processes
interact with each other via the system abstraction — InterProcess Communication
(IPC) ~ which is implemented using low-level system abstractions events and, if
required, shared memory. These system abstractions support the continuous media
commurication among processes [Hyd94].

The NTSC calls are separated into two classes, one containing calls which may only
be executed by a suitable privileged system process such as kernel, the other con-
taining calls which may be executed by any process. Further, NTSC is responsible
for providing an interface between a multimedia hardware device and its associated
driver process. This device driver implementation ensures that if 2 device has only
a low-level hardware interface to the system software, code can be implemented
within a device driver stub to implement a higher level interface. This allows the
system builder to trade off hardware complexity and cost against the processor cycles
required to implement a high-level device interface.

16.3.1 Data as Time Capsules

Some special abstractions, such as the time capsule [Her90], are seen in multimedia
systems as being related to files systems. These file extensions serve as storage,
modification and access for continuous media. Each Logical Data Unit (LDU) carries



16.3. SYSTEM SOFTWARE 677

in its time capsule, in addition to its data type and actual value, its valid life span.

This concept is more useful for video than for audio. For example, if a video has
25 frames per second, each frame has a valid life span of 40 ms. The read access
during a normal presentation occurs at this rate. The presentation rate changes for
fast forward, slow forward or fast rewind processes. This can be achieved as follows:

1. The presentation life span of a data unit (e.g., a video frame) can change. For
example, in a slow forward process, each frame is valid for a longer period of
time.

2. The valid life span is not considered. Instead, the choice of the LDUs, which
are specified through the time capsule, is influenced. In the fast forward
process, some data units are skipped, but the valid life span for each frame
is not changed. In the slow forward process, the presentation of individual
frames occurs twice or several times. Note that this simple implementation is
possible with uncompressed data. In the case of compressed motion pictures
(e.g., MPEG), the information change of the consecutive frames needs to be
considered and therefore an arbitrary individual frame cannot be skipped.
However, access to I-frames can only be implemented.

The time capsule work can be extended by the refinement of LDUs (e.g., pixel, image
frame, video sequence, etc.). The modification of the data rate should not follow
for each sample value, but for a sequence of sample values. At the video output
device, each frame must have the same valid life span because the modification of
the physical rate is not possible. A similar concept, connection of data with rate, is
presented in [GBD*+91).

16.3.2 Data as Streams

A well-known, used and implemented abstraction at the system level is the stream.
A stream denotes the continuous flow of audic and video data. Prior to this flow,
the stream is established between source(s) and sink(s). This is equivalent to the
setup of a connection in a networked environment. Subsequently, operations on a
stream can be performed such as play, fast forward, rewind and stop.



678 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

In Microsoft Windows, a Media Control Interface (MCI) provides the interface for
processing multimedia data [Mic91b, Mic91c). It allows the access to continuous
media streams and their corresponding devices.

For further considerations of streams and any kind of operating system require-
ments and basic system support of abstractions for programming continuous media
application (e.g., page locking, preemptive scheduling, system call timeouts, etc.),
Chapter 9 provides sufficient guidance.

16.4 Toolkits

A simpler approach (from the user perspective) in a programming environment than
the system software interface for control of the audio and video data processing can
be taken by using toolkits [AGH90, AC91]. These toolkits are used to:

¢ Abstract from the actual physical layer (it is also done in a limited way by the
libraries). ' )

e Allow a uniform interface for communication with all different devices of con-
tinuou$ media (with eventual input of quality of service parameters).

¢ Introduce the client-server paradigm (here, the communication can be hidden
from the application in an elegant way).

Toolkits can also hide process-structures. It would be of great value for the de-
velopment of multimedia application software to have the same toolkit on different
system platforms, but according to current experiences, this remains to be a wish,
and it would cause a decrease in performance.

Toolkits should represent interfaces at the system software level. In this case, it is
possible to embed them into the programming languages or object-oriented envi-
ronment. Hence, we describe the available abstraction in the subsequent section on
programming languages and object-oriented approaches.



16.5. HIGHER PROGRAMMING LANGUAGES 679

16.5 Higher Programming Languages

In the following, procedural bigher programming languages will be called High-Level
Languages (HLL). In such an HLL, the processing of continuous media data is influ-
enced by a group of similar constructed functions. These calls are mostly hardware-
and driver-independent. Hence, their integration in HLLs leads to a wishful abstrac-
tion, supports a better programming style and increases the productivity. Programs
must be capable of supporting and effectively manipulating multimedia data. There-
fore, the programs in an HLL either directly access multimedia data structures, or
communicate directly with the active processes in a real-time environment. The
processing devices are controlled through corresponding device drivers. Compiler,
linker and/or loader provide the required communication between the application
program and the processing of continuous data. There does not yet exist a program-
ming language which includes special constructs for the manipulation of multimedia
data, besides possibly programming languages in the digital signal processing do-
main, which exist mostly at the assembler level to achieve the best time behavior of
a program.

Media can be considered differently inside a programming language. In the follow-
ing subsections, different developed variants are discussed. First results have been
published in [SF92} and [Ste93b].

16.5.1 Media as Types

The following example shows the programming expression in an OCCAM-2 similar
notation [Lim88, Ste88). OCCAM-2 was derived from Communication Sequential
Processes (CSP) [Hoa85]. This language is used for the programming of transputers
[Whi90]. This notation was chosen in the following examples because of its sim-
plicity and embedded expressions of parallel behavior. This does not mean that
programming must be enforced this way or that this is a better way of processing
multimedia data.

a,b REAL;
ldv.left1, ldu.left2, ldu.left_mixed AUDIO_LDU;



€80 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

WHILE
COBEGIN
PROCESS_1
input(microl,ldu.left1)
PROCES3_2
input(micro2,ldu.left2)
ldu.left\_mixed := a * ldu.leftl + b * ldu.left2;

END_WHILE

One of the alternatives to programming in an HLL with libraries is the concept of
media as types. Here, the data types for video and audio are defined. In the case
of text, character is the type (the smallest addressable element). A program can
address such characters through functions and sometimes directly through operators.
They can be copied, compared with other characters, deleted, created, read from
a file or stored. Further, they can be displayed, be part of other data structures,
etc. There is no plausible reason, known to the authors, why the same functionality
cannot be applied to continuous media. The smallest unit can be the LDU. As
described in Section 2.6, these data units can be of very different granularity (and
therefore of different size and duration). In the above described example, two LDUs
from microphones are read and mixed. The following example describes the merging
of a text and motion picture. It is interpreted as the overlay of the text onto the
motion picture:

subtitle TEXT_STRING;
mixed.video, ldu.video VIDEO_LDU;
WHILE
COBEGIN
PROCESS_1

input(av_filehandle,ldu.video)
IF new_video_scene



16.5. HIGHER PROGRAMMING LANGUAGES 681

input(subtitle_filehandle,subtitle)
mixed.video := ldu.video + subtitle
PROCESS_2
output (video_window,mixed.video)

END_WHILE

An application for the merging example is a provision of subtitles in a video clip. For
example, a distribution service can transmit a movie parallel with audio and subtitles
in many languages. The user decides the combination. It is already done with stereo
tone where two languages are partially provided. The mixture of two visual media,
except the case of having a picture inside another picture, is not provided in this
form. The mixture of text and video can already be implemented in a simple way
through using, e.g., the teletext-decoder integrated in television devices. Note, that
in the above described subtitle example, an implicit type conversior must occur.
Variables of different types (VIDEQ_LDU, TEXT STRING) are added (1du.video +
subtitle} and at last again assigned to a variable (mixed.video) of one of these types
(VIDEO_LDU). During the merge, respectively the adding process, their relative
position and duration can be specified. Besides a standard value (e.g., center the
subtitle in the lower part of the picture) specified a priori, this relative position
can be defined freely by the programmer at the initialization phase. The duration
is determined in the program through an explicit fade-in operation. It can also
be defined relative to the scene duration at the initialization. Note that several
possibilities for the duration specification are described in Chapter 15.

In this area, we gathered the following experiences:

¢ The real-time processing of LDUs with a very fine granularity is complicated in
an HLL, respectively there are only conditionally predictable. An example of
an LDU at very fine granularity is an individual audio sample. The following

solutions are possible:

— The HLL actually consists of two programming environments, which are
mixed together in an application program. The real-time environment



682

CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

contains digital signal processing algorithms, which are generated, modi-
fied, improved, etc. {RS78]. The non-real-time environment contains the
whole conventional programming. The application programmer does not
notice that he deals with those two environments. Both environments
are concealed for the programmer. Hence, the code of both environments
can be mixed.

— As an alternative, the algorithms of the corresponding environments can
be contained in different functions or procedures. It is possible to call ali
real-time functions through a Reael_ Function, and all remaining functions
through a Function. Both kinds of functions can be used together. How
far a Call by Reference of continuous data is possible, depends on the pro-
cessing model of the continuous data, which is not easy to implement. If
a dedicated memory space is handled by a special-purpose signal proces-
sor, then this approach becomes even more difficult to be implemented.
Using a main processor in real-time mode, it can be implemented.

—~ A communication concept between the two programming environments
can be introduced in an HLL. An application would exist of two separate
modules where each module is defined for one programming environment.
These modules, which consist of at least one process, would exchange the
necessary information through the multimedia communication concept.

e An LDU with a gross granularity exists when, for example, a video or audio

sequence is accessed only as a whole unit. In this case, the individual media
elements cannot be accessed (e.g., beginning of the second scene).

With respect to the granularity of the LDU, it is important to find the proper
size of an LDU as the data type:

For example, in the case of audio, the audio blocks {75 per second), known
from CD technology, should be the accessible units. In the case of video, the
minimal granularity should be the video frames (i.e., not image segments, lines,
columns, pixels, etc.). Also, short video clips up to duration of two seconds can
be defined as an LDU. This makes sense, for example, for compressed video,
where besides an intraframe compression image, also images with difference
values, interframe coded, are transmitted. A typical sequence contains two



16.5. HIGHER PROGRAMMING LANGUAGES 683

intraframe coded images per second, the rest {28 images) are interframe coded.
Hence, an LDU would have the duration of 8.5 seconds.

From a pragmatic point of view, a manipulation of pixels for a discrete cosine-
transformation or a fast Fourier transformation should not be part of an HLL.
This should further consist as part of the digital signal processing with the
corresponding software and hardware, But the HLL should have access to the
DSP algorithms as a whole,

The meaning of the operators + (addition), - (removal), etc. is not only media-
dependert, but also application-specific. The addition of two video images can
mean an overlapping of two images (with transparent colors) or only a mixture
of luminance values. 7Here, a consent for the general interpretation is necessary.

16.5.2 Media as Files

Another possibility of programming continuous media data is the consideration of
continuous media streams as files instead of data types.

file_hl
file_h2

open(HICRDPHUNE_l,...)
open{MICROPHONE_2, ...)

']

file_h3 = open(SPEAKER,...)

read(file_h1l)

read(file_h2)

mix{file_3, file hl,file_h2)
activate(file_hi, file_h2, file_h3)

deactivate(file_hl, file_h2, file_h3)

rcl
rc2
rc3

= close(file_h1l)
close(file_h2)
closef{file\_h3)



684 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

The example describes the merging of two audio streams. The physical file is associ-
ated during the open process of a file with a corresponding file name. The program
receives a file descriptor through which the file is accessed. In this case, a device
unit, which creates or processes continuous data streams, can be associated with a
file name.

Read and write functions are based on continuous data stream behavior. Therefore,
a new value is assigned continuously to a specific variable which is connected, for
example, with one read function. On the other hand, the read and write functions
of discrete data occur in separate steps. For each assignment of a new value from a
file to the corresponding variable, the read function is called again.

In a seek function, the pointer in a file can be positioned to particular places which
correspond to the beginning of an LDU. Continuous data are also often played
from a source of non-persistent data. A microphone and camera are examples of
such sources. For these files, a seek function cannot be performed. This can be
compared with the reception of discrete data from a keyboard. This kind of file
processing is widespread in the UNIX™environment. Here, the most device units
are handled at their interfaces to the applications as files (either as a stream device or
as a block device). The programming of devices must be extended corresponding to
Leungs active devices [LLM*88]. All file-similar functions can be used, additionally
it is also possible to activate and deactivate a device. An activate function means
that the actual data transmission starts and a deectivate function means that the
transmission stops.

Using this kind of programming of continuous data, the number and functionality
of the operations with continuous data (in comparison to programming with media
data types) is limited. This approach can be seen as the programming of data
streams.

16.5.3 Media as Processes

The processing of continzous data contains a time-dependency because the life span
of a process equals to the life span of a connection(s) between source(s) and destina-
tion(s). A connection can exist locally, as well as remotely. Under this consideration,



16.5. HIGHER PROGRAMMING LANGUAGES 685

it is possible to map continuous media to processes and to integrate them in an HLL.

PROCESS cont_process_a;

On_message_do
get_volume ..
get_loudness .

[main],
pid = create(cont_process.a)
gend(pid, set_volume, 3)
send(pid, set_loudness)

In the above example, the process cont_process.a implements a set of actions (func-
tions) which apply to a continuous data stream, Two of them are the modification
of the volume set_volume and the process of setting a volume, dependent from a
band filter, set_loudness.

During the creation of the process, the identification and reservation of the used
physical device(s) occur. The different actions of the continuous process are con-
trolled through an IPC mechanism. For example, the transmission of continuous
data is controlled by sending signals and messages. The continuous media process
determines itself how the accessed actions are performed.

Thus, the processing can be done either once or continuously, meaning that during
the entire transmission of continuous data:

o The loudness is determined once by a device driver call. The driver loads a
certain storage content which is used by the running process controlling an
audio board.

e If the main processor passes the audio data further from a file to the communi-
cation system, then the loudness can be changed here. Thus, the compression



€86 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

and coding must be considered. In this example, it is assumed that an uncom-
pressed PCM-coded audio signal with 64 Kbits/s is present. The continuous
process transmits these data and changes, as well as the loudness, according
to the desired value.

The present variants.for the integration of a multimedia programming in an HLL
require the properties of the programming language described in the section below.

16.5.4 Programming Language Requirements

The processing of continuous data is:

» Controlled by the HLL through pure asynchronous instructions (typically,
through the use of a library).

® An integral part of a program through the identification of the media, respec-
tively data streams with data types, variables, files or processes.

Therefore, the HLL should support a parallel processing as was presented in all
examples of HLL programming of continuous media. Thus, it is of secondary im-
portance if the number of processes is known at compile time or if it is defined
dynamically at run-time.

Interprocess Communication Mechanism

Different processes must be able to communicate through an Inter-Process Commu-
nication mechanism (IPC). This IPC mechanism must be able to transmit audjo and
video in a timely fashion because these media have a limited life span. Therefore,
the IPC must be able to:

® Understand a priori and/or implicitly specified time requirements. These re-
quirements can be specified using QoS parameters or they can be extracted
from the data type (if a medium is implemented as a data type).



16.5. HIGHER PROGRAMMING LANGUAGES 687
¢ Transmit the continuous data according to the requirements.

o Initiate the processing of the received continuous process on time.

The generated heap from the compiler is Limited in its size, the location and proper-
ties are determined by the compiler. The processing of time-critical data requires a
careful assignment and manipulation of the storage space. The IPC and communica-
tion between different programs must happen effectively. The performance analysis
in the multimedia and high-speed communication systems show that the most time-
consuming operation is the copying of data operation. System-wide uniform buffer
management at the system software layer extracts this problem. A virtual copying
means that the access rights onto the buffer spaces are passed to other components.
For example, this approach was implemented in the multimedia communication sys-
tem HejTS [HHS91]. The HLL compiler for continuous media must use this buffer
management. The same is true for the IPC implemented in this language.

Audio and video processes require the availability of real-time processing. This can
be implemented, as described in Section 16.4.1, by combining two programming
environments. The HLL should support a clear data type specification.

Language

The authors see no demand for the development of a new dedicated language. A
partial language replacement is also quite difficult because cooperation between the
real-time environment and the remaining programs requires semantic changes in the
programming larguages. The IPC must be designed and implemented in real-time,
the current IPC can be omitted.

A language extension is the solution proposed here. For the purpose of simplicity,
in the first step, a simple language shouid be developed which satisfies most of the
above described requirements. An example of such a language is OCCAM-2. Some
real-time systems are implemented in this parallel programming language today.
An alternative is a parallel C-variant for the transputer. In the long run, ADA still
provides a good concept as a language basis.



688 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

16.6 Object-oriented Approaches

The object-oriented approach was first introduced as a method for the reduction of
complexity in the software development and it is used mainly with this goal today.
Further, the reuse of software components is a main advantage of this paradigm. The
basic ideas of object-oriented programming are: data encapsulation and inheritance,
in connection with class and object definitions. The programs are implemented, in-
stead of using functions and data structures, by using classes, objects, and methods.

Abstract Type Definition

The definition of data types through abstract interfaces is called abstract fype def-
initions. The abstract type definition is understood as an interface specification
without a knowledge and implementation of internal algorithms. This data abstrac-
tion hides the used algorithm.

In a distributed multimedia system, abstract data types are assumed for virtual and
real device units such as cameras and monitors. For example, an interface, which
contains a function zoom, can also contain a parameter which specifies the actual
position in an area from 10 ... 500. However, this specification does not describe
the actual implementation.

Class

The implementation of abstract data types is done through classes. A class specifi-
cation includes an interface provided to the outside world.

For example, in a class professional_camera, the operations zoom and set_back_light
are defined and implemented. If the objects, which represent a closed class, use
only relative position entries, the implementation of the zoom operation needs to
transform the absolute values into the necessary relative parameters.



16.6. OBJECT-QORIENTED APPROACHES 68Y
Object

An object is the instance of the class. Therefore, all objects, derived from the
same class include the same operations as an interface to the outside world. An
object is created at run-time of the system. It includes a set of operations, which
are called methods. Additionally, each object has an internal state, which exists
during the life span of the object, but it can only be accessed using the methods
associated with this object. It can be compared with a global variable assigned to a
process, but not with Jocal variables of functions and procedures (as is implemented
in most programming languages). Objects communicate among each other through
the exchange of messages. Thus, a message calls the corresponding method of the
target object.

In a distributed multimedia environment, virtual units are considered to be objects.
Thus, corresponding methods represent operations on the devices. The method play
of a VCR object ( Video Cassette Recorder) is mapped to the play_operation of the
corresponding VCR device driver. Multimedia data units (the LDU’s images, audio
and video clips) can also be considered objects.

Inheritance

One of the most important properties of object-oriented systems is inheritance.
Classes contain, besides the root and leaves of the hierarchy, superclasses and sub-
classes (fathers and sons).

For example, let the class professional_camera be a subclass of the class camera,
Methods such as autofocus_on and focus are defined in the class camera. The pro-
fessional camera class also has the method zo0om. An object, which is derived from
the professional_camera, can use the method zoom, as well as the operations focus
and autofocus_on.

The main problem has been and remains to be the design of a clear and uniform
class hierarchy for a multimedia system.

Until now, only simple inheritance was considered. For example, for the application



690 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

interface of a conference application, it is not possible to explicitly combine all
necessary devices for each conference. Such an application would be dependent on
a certain set of device types which are bound together in the required configuration.
Device binding often includes different basic devices. A conference object inherits
properties of different objects in an object-oriented environment, therefore a muliti-
inheritance is often useful.

Another type of inheritance is used by the consideration of interfaces. The same
interface is provided for different classes, but the implementations can be very dif-
ferent. So, the operator + (addition) could contain, according to the used data
type, slightly different semantics and implementation. The addition of audio LDUs
means the mixing of audio signals. Additionally, when applied to two video data
streams, it can mean, for example, simultaneous presentation of both information
streams in different halves of a window.

Polymorphism

Polymorphism is related to the property of inheritance indicating when the same
name of 2 method is defined in several classes (and objects) with different imple-
mentations and functionalities. For example, the function play is used with audio
and video data. It uses different device units for each medium. The data can come
either from a file of a local file environment or from an audio-video sequence of an
external device. Inside of the object-oriented approach, for example, play is defined
in different classes. According to which object must perform the operation, the
corresponding method is chosen,

This concept is especially useful with respect to system use because the complexity
of different types and device units is reduced and there is a common set of method
names for classes and objects of different media. On the other hand, polymorphism
can also very easily cause programming errors that are difficult to find. Hence,
this abstraction strongly complicates the implementation. This can occur easily
through unwanted, multiple identical method names. In an object-oriented environ-
ment, according to. Wegener's definition [Weg87, Nie89], multimedia programming
is achieved through the implementation and extension of class hierarchies.



16.6. OBJECT-ORIENTED APPROACHES 691

The following sections describe different class hierarchies that support multimedia
systems and applications. The examples and actual implementations were devel-
oped in the language C++, but the results are independent of a specific language
[SF92]. In the authors’ opinion, there will be many different class hierarchies in the
future and they will be connected through complex relations to provide required
interactions. However, the resulting complexity will not be easy to handle.

16.6.1 Application-specific Metaphors as Classes

An application-specific class hierarchy introduces abstractions specifically designed
for a particular application. Thus, it is not necessary to consider other class hi-
erarchies. This approach leads to a number of different class hierarchies. Fur-
thermore, using this approach, one very easily abandons the actnal advantage of
object-oriented programming, i.c., the reuse of existing code.

Unfortunately, this is currently the most used solution, which has led to different
kinds of class hierarchies. Although, for similar applications, similar class hierarchies
can be implemented. Therefore, a catalog of similar applications Is necessary to use
the existing knowledge for the development of a new application.

16.6.2 Application-generic Metaphors as Classes

Another approach is to ¢combine similar functionalities of all applications. These
properties or functions, which occur repeatedly, can be defined and implemented
as classes for all applications. An application is defined only through a binding
of this class. For example, basic functions or functional units can create classes.
The methods of these classes inherit the general methods through integration of
application-specific subclasses. In theory this approach sounds easy to follow. In
practice, we have not yet a very useful set of basic/generic application classes looks
like, because known implementations of application-generic classes only work well
for a very restricted set of applications.



692 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING
16.6.3 Devices as Classes

In this section we consider objects which reflect a physical view of the multimedia
system. The devices are assigned to objects which represent their behavior -and
interface.

Methods with similar semantics, which interact with different devices, should be
defined in a device-independent manner. The considered methods use internally, for
example, methods like start, stop and seek. Some units can manipulate several media
together. A computer-controlled VCR or a Laser Disc Player (LDP) are storage
units which, by themselves, integrate (bind) video and audio. In a multimedia
system, abstract device definitions can be provided, e.g., camera and monitor. We
did not say anything until now about the actual implementation. The results show
that defining a general and valid interface for several similar audio and video units,
as well as input and output units, is quite a difficult design process. This is also
demonstrated by the following abbreviated C++ program [SF92):

class media_device
{char *name;
public:
void on(), off();
}; /% end media_device */

class media_in_device :
public media_device
{private:
DATA data;
public:
refDATA get_data();
}; /* end media_in_device »/

class media_out_device :
{public:
void put_data(refDATA dat);
}: /* end media_out_device */



16.6. OBJECT-ORIENTED APPROACHES 693

class answering_machine:
public media_device
{private:
list my_list; // class for ADT list
media_in_device recorder;
media_out_device message_for_caller, message_from_caller;
RefDATA information; // text a caller hears
void display_position();
public:
void answer()

{message_for_caller.on();
message_for_caller.put_data(information);
message_for_caller.off()};
recorder.on();

}

void play()

{message_from_caller.on();
message_from_caller.put_data(my_list.head());
display_position();
message_from_caller.off();
my_list.dequeue()

}

} /* end answering machine */

main(){ };

The concept of devices as class hierarchies provides a simple parallel performance
of the methods. Note, synchronization is not supported in this hierarchy and must
be provided through other components; multiple inheritance is often needed.

16.6.4 Processing Units as Classes

This abstraction comprises source objects, destination objects and combined source-
destination objects which perform intermediate processing of continuous data. With



694 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

this approach, a kind of “lego” system is created which allows for the creation of a
data flow path through a connection of objects. The outputs of objects are connected
with inputs of other objects, either directly or through channel objects.

As an example of this concept, the processing unit as a class is presented. (It was
originally implemented as part of the DIME project of the IBM Furopean Network
Center in Heidelberg, Germany [SHRS90].). Tt was used at the beginning of the
application implementation of a remote camera control system in Heidelberg. It
should he understood that it is as an example only.

Similar considerations are discussed in [AC91] with the node types of COMET, in
[GBD*91] with sources, destinations and filters, and in {$591] with modules of a
variable number of input and output channels.

Multimedia Object

A multimedia application processes and controls (respectively generates) the in-
teractions and information of different continuous and discrete media. From the
object-oriented viewpoint, an application is considered to be a multimedia object.
Such an object uses or consists of many other objects which contribute to the so-
lution of the task. These objects are connected to, for example, representation of
different media and device units. Such a Compound Multimedia Object (CMO) con-
sists of other CMOs and Basic Multimedia Objects (BMOs). The Basic Multimedia
Class (BMC) typically represents an individual medium of an input type (e.g., data
from a camera, stored audio sequences from a file) or output type (e.g., data output
to a video window or speaker). A Compound Multimedia Class (CMC) can control,
and respectively represent several media and devices. BMOs are instances of BMCs;
CMOs are instances of CMCs.

Data can be either transient or persistent. For example, if an image is read from a
hard disk, the following properties are connected with each other: life span, input
type and medium image. Generally, the media are tezt, image, audio and video.
Further, it is possible to consider other media such as tables or drawings which need
to be included in the range of BMCs.



16.6. OBJECT-ORIENTED APPROACHES 695

For clarification of the properties of this approach, an encyclopedia example is dis-
cussed below. Instead of presenting the example in an object-oriented language,
the example specification is chosen in an easy-to-understand notation for didactical
reasons:

Lexicon: compound_cbject;
DATA: Explain external;
Animation external;
ACCESS_POINTS: VIDEO_SOURCE Animation.VIDEO_SOURCE;
AUDIO_SOURCE Animation.AUDIO_SOURCE;
TEXT_SOURCE Explain.TEXT_SOURCE;
METHODS :
start: display(Explain);
play: play(Animation);
pause: pause(Animation);
stop: stop(Animation);

Animation: compound_object;
DATA: Speech external;
Scene axternal;
ACCESS_POINTS: VIDEO_SOURCE Scene.VIDEO_SQURCE;
AUDIO_SOURCE Speech.AUDIO_SOURCE;
METHODS:
play: play(Speech), play(Scene) in_parallel;
pause: pause(Speech), pause(Scene) in_parallel;
stop: stop(Speech), stop(Scene} in_parallel;

EVENTS:
audio_end: wait(video_end); stop(Scene);
video_end: wait(audio_end); stop(Speech);
Scene: basic_object;
DATA: VIDEO_filename at node_1;
ACCESS_POINTS: VIDEO_SOURCE;
METHODS :



696 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

play;
pause;
top;

EVENTS:
at_end: display(LAST_PICTURE), inform_PARENT(video_end);

Speech: basic_object;
DATA: AUDIO_filename at node_2;
ACCESS_POINTS: AUDIO_SOURCE;
METHODS:
play:
pause:
i BTOp:
EVENTS:
| at.end: inform_PARENT(audio_end);
Explain: basic object;
DATA: TEXT.filename at node_1;
ACCESS_POINTS: TEXT_SOURCE;
METHODS:
display;

EVENTS :

In the above example, the actual classes of the lexicon are presented. Instead of
Ezplain: basic_object, actually Ezplain: basic_class should be given; instead of An-
imation: compound_object, Animation: compound.class should be considered. The
reason why objects instead of classes were considered is just simplicity. This way,
the example shows its run-time behavior better. BMOs are used as processing el-
ements with the sources, destinations and combined sources-destinations of media
streams. Corresponding to the class hierarchy of BMOs, different properties can be
chosen at the highest level of the classification.

In Figure 16.3, a division of source, destination and combined source-destination is



16.6. OBJECT-ORIENTED APPROACHES 697

Figure 16.3: Erample of a multimedia class hierarchy.

shown as the primary qualification attribute. The mediun: is defined as a secondary
attribute. It is important to point out that in other examples, several BMOs from
the same BMC can coexist simultaneously.

Data Specification DATA

The data specification DATA specifies the BMO’s binding to a file, a device unit
and their place. A device unit mostly consists of hardware and software, although a
device unit may only consist of a software module. There can be objects at different
places which point to remote BMOs. In the data specification, the lexicon example
shows the binding of the object Scene to the VIDEQ. filename at the place node_I.

Methods

Each BMO contains a set of methods that is dependent on its class. Some methods,
which repeat themselves, are play and stop. The internal state of all multimedia
objects which process continuous media is constantly renewed with current values
because the actual data (for example, a picture of a video scene) are valid only dur-
ing a certain time interval. Therefore, some methods also support time-dependent
functions such as slow motion, presence of a scens during two seconds or velume



698 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

sncrease during five seconds.

Event Processing

BMOs include event-driven processing to inform other objects about certain states
of their own objects, for example, start and end. Further, they are used to transmit
asynchronous events which happen during the life span of an object. Therefore,
events are special kinds of operations of an object. They can be compared to ez-
ceptions in real-time programming languages such as CHILL. A BMO, connected
to a continuous data stream, contains in our model its own defined time-scale and
events. A priori-defined events are start and end. Additionally, there can be de-
fined user-specific events. The relation between events and their event processing is
specified for each BMO.

Access Points

Continuous data of a data stream can be processed from several objects consecu-
tively. The corresponding BMOs must be connected with each other. Therefore,
each BMO contains one or several ports which are called access points. Access points
for BMOs are objects which consist not only of local addresses, but also of protocols
with entries concerning the required data coding and compression. They include all
source- and destination-specific information which is necessary for their connection.
BMOs can have access points such as VIDEO_SOURCE, and VIDEO_SINK. The
application can pass the multimedia data to storage, communication, presentation
and processing units through access points.

Transparent to the manipulation of multimedia objects, is the control of adequate
transmission over the network(s). The network component takes the necessary in-
formation, including the QoS parameters for connection setup and for data trans-
mission from the object-control-information. The required resource management is
interfaced by this processing.



16.6. OBJECT-ORIENTED APPROACHES 699

Channel Object

A binding between one or several sources and one or several destinations can be
implemented. A channel object is created with dedicated and communication-
supportive methods to bind sources and destinations. After creations of such a
channel, sources and destinations can be bound to each other through a bind call to
the particular channel. This approach allows the implementation of not only mul-
ticast, but also n-to-m connections (n,m > 0). The access rights of the particular
object are assigned during the bind call. Destinations and sources can be bound to
the same channel independently through this mechanism.

Depending on the channel object implementatior, one or several sources can be
connected to it. Usage with an individual source is the same as in the case of a
normal TV transmission channel: a channel is created, the data of the source object
- are recorded and each authorized-user can connect to this channel and can receive

the continunous data.

In a general case with several sources, the channel serves as a mixer of data and
it must also guarantee synchronization. Using channel objects, it is possible to dy-
namically change the bindings among different multimedia objects. They always
contain the methods connect and disconnect. To fully integrate BMOs into the sys-
tem, this multimedia connection management must be implemented as a multimedia
communication system.

CMO, BMC and CMC

Given that different media are not only supported separately, but also simulta-
neously, some device-dependent media combinations must be integrated into the
object-oriented model.

An application should additionally find predefined Compound Multimedia Classes
(CMCs)and their corresponding CMOs, as well as create them itself. In this section,
this extension of the model is discussed.

An application implements a new CMC by using content-containing BMCs and



700 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

CMCs. This new class contains other classes inside its data specification, access
points, methods and/or event processing. With respect to methods, this property
is called inheritance.

The activation of a CMC creates a CMO. A binding inside of the data specification
can be set inside the class, as well as for a specific object. Additiorally, information,
such as life span, access rights and distribution aspects can be assigned to an object.

The methods of CMOs can be set up application-specifically. They are developed
using methods of content-containing BMCs and CMCs and private algorithms. In
our example, the method play of the CMO Animation uses the methods play of the
objects Speech and Scene.

Similar to the method specification, the event processing of CMQs is defined. Typi-
cally, either methods of the content-containing object (see stop(Scene) of the CMO
Animation) are called or an event is sent to other objects (see inform_PARENT
(video_end) of the CMO Scene). Events inform the called objects about the state of
the calling object.

The use of methods and events allows the application to create a script which ex-
presses the interactions of different objects precisely and relatively simply. Thus,
the presentation of multimedia data can be determined.

Distribution of BMOs and CMOs

Another aspect is the distribution of BMOs and CM0Os. A CMO can consist of
objects which are distributed over different computer nodes.

The channel object with the methods create_connection and delete_connection sup-
ports the possibility to manage connections of several media together. Internally,
the transmission can be implemented either through integration and interleaving
of different media over one connection or through several individual connections.
" Thus, the access rights of data can be examined. For example, consider the class
of a CMO, called lezicon, as shown in Figure 16.4. BMOs and CMOs (the same as
BMCs and CMCs} contain the four areas DATA, ACCESS_.POINTS, METHODS
and EVENTS. This example shows BMOs, as well as CMOs. The data of the BMO



16.6. OBJECT-ORIENTED APPROACHES 701

start
— explain
displa
animation
play _Ly_>la scene speech

M=—

pla;
ause Eﬂ: video end

[ audio end

Figure 16.4: Ezample of a CMC.

specification are abbreviated with _filename. At the moment when the CMO lezicon
is activated, or started, a text of the text object Ezplain is displayed. The user can
call the method play in the application which activates the corresponding method in
the CMOQ Lezicon. Play starts the presentation of a combined audio-video sequence
of the abject Animation. The application also allows the user to access methods like
pause or stop. Thus, the corresponding method in the lexicon is called. The CMO
Animation is a composition of audio and video objects.

If one assumes that the audio and video information output do not posses the same
length, then certain actions must be performed when one of the media finishes earlier
than the other(s). The method play of the object Animation starts the video scene
and the audio passage concurrently. If the audio passage finishes before the video
scene, the event audio_end is sent from the object Speech to the object Animation.
If the video scene finishes before the andio passage, the last image of the video
sequence is displayed and the signal video.end is sent to the object Animation.

All events of the object Animation cause a data flow to be stopped, some media-
dependent methods to be performed, and the waiting of an event of another object.
At the end, the combined audio-video information as a whole unit is stopped. This
kind of synchronization is known as conditional blocking [Ste90}.

In the preceding paragraphs, sources were specified as BMOs and CMOs. In the
same way, destinations and combined source-destination objects can also be specified



702 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

as BMOs and CMOs. They may represent:

o Cutput devices such as windows. monitors or speakers.
® Files of internal secondary storage devices or external storage devices.

e Processing units of continuous media with input and output ports (hardware
and/or software).

The above described model served as the basis for the development of a remote
camera control [WSS94]. This application (remote camera control), implemented in
C++, includes communication support which allows the control of different kinds of
cameras from a remote place. In another recent approach at the EPFL (Lavosanne),
a language, called Sync C++ has been implemented as a concurrent versior of C++
[CDP94]. There, Petitpierre defined active objects which were used for real-time
programming of multimedia data. These objects had their own life span (as threads
of execution) and hence, worked independently from the others. Sync C+4 was
shown to be very efficient in writing multimedia applications with a large amount
of user interface handling.

16.6.5 Media as Classes

The Media Class Hierarchy defines a hierarchical relation for different media. The
following example shows such a class hierarchy. Thus, the individual methods of the
class hierarchy will not be described. The class Pizel in the class hierarchy uses, for
example, multiple inheritance.

Medium
Acoustic_Medium
Music
Opus
Note
Audio_Block
Sample_Value



16.6. OBJECT-ORIENTED APPROACHES

Speach

Optical _Medium
Video
Video_Scene
Image
Image_Segment
Pixel
Line
Pixal
Column
Pixel
Animation

Text

other_continuous_medium
discrete_medium

703

Another example shows the following class hierarchy (note, so far we have not found
a best class hierarchy because different class hierarchies are better suited for different

applications):

Medium
continuous_medium
Audio
Audio_Passage
Music
Speech
Noise
Video



704 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

Video_Scene
Animation
Animation_Scene
Pointer_Information
Further_Realtime_Data
discrete_medium
Image
Image.Segment
Pixel
Line
Pixel
Column
Pixel
Text
Formula
Table
Line
Attribute
Formula
Value

A specific property of all multimedia objects is the continuous change of their inter-
nal states during their life spans [SHRS90, GBD*91]. Data transfer of continuous
media is performed as long as the corresponding connection is activated. A con-
nection can be either a connection for local data transfer between source(s) and
destination(s) (e.g., from a disc to a video window), or a connection for remote data
transfer. Data can also be transmitted when a method does not exist for the object
(besides the methods new andfor init), respectively a message was not sent. The
activation happens implicitly in this case. Thus, the internally managed storage
areas of continuous media always take new values. This is also valid for the control
information, for example, time stamps.

Besides the class hierarchy, the main attributes (expressed or retrieved through
methods) need to be considered for different classes. Typical methods used by all



16.6. OBJECT-ORIENTED APPROACHES 705

continuous media are, for example, play and stop. We have implemented these
methods for different classes and different devices. The lesson learned is that it is
relatively easy to enforce the same or similar semantics for different implementations.

Some programming environments already provide languages based on the object-
oriented approach with processing units or media as classes. For example:

o Gibbs’ Multimedia Programming FEnvironment has a strong media relation
[GBD*91]. 1t is implemented through a scripting language extension at the
user interface. This language belongs to the category processing unils as
classes. Here, constructs for input of parallel, sequential, repetitious process-
ing are included (¢ >> b, a & b, n x b).

e The RendezvousT™ Environment includes graphical classes [HBP*93]. The
primitive graphical classes include the full range of drawing primitives avail-
able to the X Window System™, such as lines, rectangles, polygons, arcs,
ovals, text and color and monochrome images. In this environment, the appli-
cation programmer uses the Rendezvous Language, which is an object-oriented
language extended with features that simplify the construction of multi-user
interfaces using the Rendezvous Architecture. The structure of the major
Rendezvous Language components, including the interface to the X Window
System via CLX (Common Lisp X}, is shown in Figure 16.5.

Considering media as classes is a general approach. As a part of each application
there can also be further multimedia-specific class hierarchies.

16.6.6 Communication-specific Metaphors as Classes

Communication-oriented approaches often consider objects in a distributed environ-
ment through an explicit specification of classes and objects tied to a communication
system. Blakowski specifics, for example, information, presentation and transport
classes [Bla91a). The information, contained in the information objects, can build a
presentation object which is later used for presentation of information. Information
objects can be converted to transport objects for transmission purposes (see [Blagla)
for the complete state-transition graph). Possible extension to this model would be



706 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

Event Graphical Classes
Scheduler

Declarative (;raphics Abstract C1

Systemn
CLX
Faat Constraint Event Handling
Maintenance System Language
C List & CLOS (Common Lisp Object System)
X (with multi-p

Figure 16.5: Structure of Rendezvous Language components [HBP+93].

a storage class. Information is often processed differently. It depends on whether
the information should be presented, transmitted or stored. With storage objects,
it is necessary to consider the different storage formats. Relevant formats are the
coding and compression formats, format of interleaved data streams and formats
such as CD-ROM ISO 9660.

16.7 Comments

The current research in programming of multimedia applications leads to the fol-
lowing conclusions:

o There are too few proper data abstractions for structural programming of
multimedia data.

e The abstraction level for higher procedural programming languages, which is
used for the programming of continuous media has been considered only to a
very small extent.

o There is a great number of object-oriented and toolkit approaches based on
very different class hierarchies. Consolidation is needed.

Hence, the following comparisons can be made:



16.7. COMMENTS 707

o Libraries represent the simplest integration of multimedia devices and func-
tions in a system. The functions of such a library can be called from the system
software level, as well as by a programming language. Different devices (often
with the same functionality) provide different interfaces. Hence, portability of
multimedia programs tends to be difficult.

Using this library approach, multimedia products can be brought to market
in a short time with new and already improved functions. However, after
some time, the complexity of the application development increases because
of different hardware which slows down the further spread of this approach.
Therefore, other abstraction levels are necessary.

o System software interfaces integrate multimedia functions into the operating
system. Currently, approaches are tied to specific operating systems and to
one kind of multimedia data processing,.

Instead of providing devices in the form of libraries for processing of continuous
media, it is necessary to integrate device drivers into the operating system.
The main problem is current operating systems: most of them do not provide
real-time processing. Today, it is still necessary to find tricky ways to provide
multimedia processing.

o Higher procedural programming languages can rely on library functions when
continuous media programming is integrated. However, these libraries are
product-specific and very different. Therefore, a corresponding programming
language needs to communicate with several libraries. This requires a high
development effort.

As an alternative, it is possible to access abstractions such as constraints and
event handlers in the operating system. However, because this alternative is
available only in special cases (e.g., the Rendezvous Environment and Nemo
system ), this approach will take time to catch on. Thus, it is not clear how
these abstractions will differ in various operating systems. The development
of current commercial multimedia applications is done mostly using higher
procedural programming languages. Here, the functions of existing libraries
can be called directly. Integrated programming of applications with continu-
ous media inside higher programming languages leads to simpler and clearer
programming.



708 CHAPTER 16. ABSTRACTIONS FOR PROGRAMMING

o Object-oriented approaches are the most widespread abstractions for research
in programming of multimedia applications today. Existing system software is
most often used for integration with physical devices, Therefore, as a first step,
all functions of this system software is tied to its class hierarchy. The same
happens with communication systems. Thus, the developed class hierarchies
are very different, and one cannot currently identify the best class hierarchy.
The combination of the media-related class hierarchy with the “lego” approach
of processing units may satisfy several applications.

There is no best approach to the abstraction of multimedia data (according to cur-
rent experiences and results). Different abstraction levels will coexist; however, to
mutually use the respective results, these layers must build on one another (as shown
in Figure 16.1).



